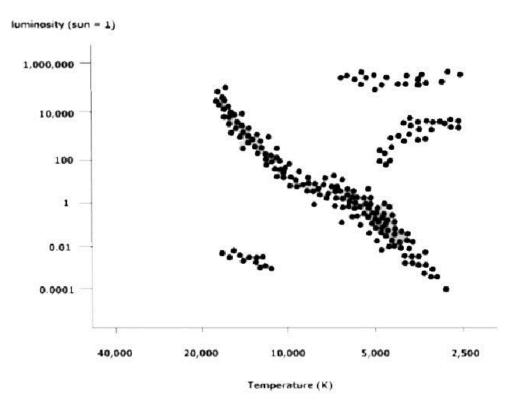


CfE Advanced Higher Physics

Rotational Motion & Astrophysics Homework


5. General Relativity

1 . A satellite is in orbit around the Earth at an altitude of 750km. Calculate the satellite's escape velocity.	3
2 . How does the equivalence principal link the effects of gravity with acceleration?	3
3 . A star which is approximately the same size as our Sun has an average density of 2.7 x 10^3 kg m ⁻³ .	
If this star collapsed to form a Black Hole, calculate the Schwarzschild radius of the Black Hole.	9
 A star with a radius of 8.7 x 10⁹m and a surface temperature of 6100K is 42 ly from Earth. 	
Calculate the apparent brightness of the star.	6
5. Explain what is meant by the term <i>geodesic</i> .	2
6. What effect does mass have on spacetime?	2

7.Mercury's orbit around the Sun could not be predicted accurately using classical mechanics. General relativity was able to predict Mercury's orbit accurately. Investigate this using a suitable search engine and write a short paragraph summarising your results.

3

8. The diagram below shows one way of classifying stars. Each dot on the diagram represents a star.

The stars are arranged into 4 main groups; the main sequence, giants,

super giants and white dwarfs.

(a) In which of the regions on the diagram is the Sun?	1
(b) The surface temperature of the Sun is approximately 5800K. Explain why the scale on the temperature axis makes it difficult to	
Identify which dot represents the Sun.	1
(c) In time, the Sun's nuclear fuel will be used up. Explain what will then happen to the Sun's position in the above diagram and why.	3

Total Marks 33